Punamustan verkkokauppa
    Hae: 
      0 tuotetta ostoskorissa  

Oulun yliopiston väitöskirjat




BONE AS A TARGET FOR PERSISTENT ORGANIC POLLUTANTS, ACTA UNIVERSITATIS OULUENSIS D Medica 1399


ISBN-13:978-952-62-1429-0 
Kieli:englanti 
Kustantaja:Oulun yliopisto 
Oppiaine:Lääketiede 
Painos:Osajulkaisuväitöskirjan yhteenveto-osa 
Painosvuosi:2016 
Sijainti:Print Tietotalo 
Sivumäärä:84 
Tekijät:KOSKELA ANTTI 

16.50 €

Persistent organic pollutants (POPs) are ubiquitous and bioaccumulative man-made chemicals, resistant to chemical, biological and photolytic degradation and widely distributed to sediments, wildlife, and human. Many of these chemicals have adverse effects on a variety of targets, including the endocrine system, organogenesis and reproduction. Due to these effects and wide distribution, many of them are either banned or strictly controlled. However, because of persistency, they continue to interact with organisms globally. Despite the existing knowledge of the adverse effects of POPs, the effects of many chemicals on bone tissue are still poorly known. In the present study, we investigated the adverse effects of three common POPs, including tributyltin (TBT), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and perfluorooctanoic acid (PFOA) on the skeletal system. In vitro models were used to study the effects of PFOA in mouse and in human, and the co-effects of TBT and TCDD on differentiating osteoblasts and osteoclasts of mice. An in vivo model for mice was used to study the developmental effects of maternal PFOA-exposure on pups among with morphometrical and biomechanical property analyses. Mass-spectrometry was used to study the presence of PFOA in bones both in mice and in human, the latter acquired from the bone bank held in the Oulu University Hospital, Finland. The bones were also analyzed with cone beam computer tomography and microcomputer tomography. The results show that PFOA exposure in utero and during lactation leads to the accumulation of PFOA in bone, traceable even 17 months after exposure. PFOA exposure decreased the mineral density of the tibias and increased the medullary area. Nearly all of the human samples contained PFAS, including PFOA. PFOA also disturbed the differentiation of osteoblasts and with lower doses, increased bone resorption of osteoclasts both in mouse and human, the phenomenon being slightly stronger in mice. Co-exposure to TBT and TCDD led to decreased differentiation of osteoblasts and osteoclast, and the co-effect was partially synergistic in osteoblasts. These results show disruption of bone development, bone cell differentiation, and PFAS accumulation in bone. Further studies are recommended to evaluate the co-effects of different POPs and the possible effects of long-term accumulation of POPs in bone and other tissues.


Takaisin