Punamustan verkkokauppa
    Hae: 
      0 tuotetta ostoskorissa  

Oulun yliopiston väitöskirjat




THE INTERACTION BETWEEN THE INTRACELLULAR ENDOPHYTIC BACTERIUM, METHYLOBACTERIUM EXTORQUENS DSM13060, AND SCOTS PINE (PINUS SYLVESTRIS L.), ACTA UNIVERSITATIS OULUENSIS A Scientiae Rerum Naturalium 675


ISBN-13:978-952-62-1231-9 
Kieli:englanti 
Kustantaja:Oulun yliopisto 
Oppiaine:Luonnontieteellinen tiedekunta 
Painos:Osajulkaisuväitöskirjan yhteenveto-osa 
Painosvuosi:2016 
Sijainti:Print Tietotalo 
Sivumäärä:102 
Tekijät:KOSKIMÄKI JANNE 

21.50 €

To date, plant endophytic bacteria have mainly been studied in roots of crop plants. However, shoot-associated endophytes are less diverse than root-associated ones. Hence, endophytic bacteria of plant shoots evolved different traits, than root colonizers, especially with types of host tissues infected and patterns of growth and development. This study found Methylobacterium extorquens colonized pine seedlings similarly to stem-colonizing rhizobia of other plants. M. extorquens DSM13060 was isolated from meristematic cells in shoot tip cultures of Scots pine (Pinus sylvestris L.). M. extorquens infected the plant stem through epidermis or stomatal apertures, forming infection pockets in the root and stem epidermis, or cortex. Post-infection, thread-like infection structures passed through the endoderm, invading vascular tissues. This led to systemic colonization of above and below ground-parts, observed in in vitro grown Scots pine. A novel mechanism enabling development of endophyte-host symbiosis is discovered within the M. extorquens – Scots pine model. This mechanism involves ability of M. extorquens to produce polyhydroxybutyrates (PHB) to protect itself from host-induced oxidative stress during infection. Upon initial colonization on the host surface, M. extorquens DSM13060 consumes methanol as a carbon source, using it to biosynthesize PHB. PHB are then degraded, upon host infection, by PHB depolymerases (PhaZ) to yield methyl-esterified 3-hydroxybutyrate oligomers. These oligomers have substantial antioxidant activity towards host-induced oxidative stress, enabling the bacterium to bypass host defenses and colonize further tissues. The bacteria can also store PHBs for future protection. The capacity for PHB production and, thus, protection from oxidative stress, is discovered in a wide taxonomic range of bacteria. This study also shows meristematic endophytes are important in growth and development of their hosts. Unlike many bacterial root endophytes, M. extorquens DSM13060 does not induce plant growth through hormones. However, this bacterium can colonize the interior of living host cells, where it aggregates around the nucleus of the host plant. M. extorquens DSM13060 genome encodes nucleomodulins, eukaryotic-like transcription factors, which may intervene in host transcription and metabolism.


Takaisin